Новости

Ученые МФТИ создали шторм в море электронов для нового детектора

20 декабря 2018 Рубрика: Исследования и разработки, Новости организаций Ключевые слова: МФТИ, графен, источники терагерцового излучения, терагерцовый детектор

Коллектив ученых из России, Англии, Японии и Италии создал терагерцовый детектор на основе графена. Работа опубликована в журнале Nature Communications.

Любая система беспроводной передачи информации предполагает наличие источников и детекторов электромагнитных волн, но не для любых волн они имеются. Например, существующие источники терагерцового излучения потребляют огромную мощность или требуют низких температур. Однако, использование терагерцовых волн сулит повышение скорости передачи данных в Wi-Fi-системах, развитие новых методов медицинской диагностики, а также открытие объектов в радиоастрономии.

Причина неэффективности терагерцовых детекторов — разница в длине волны излучения (~0,1 мм) и размере детектирующего элемента — транзистора (~1 мкм). Волна «проскакивает» мимо детектора, не замечая его. Для решения этой проблемы конце ХХ века было предложено «спрессовать» энергию падающей волны в объем, сравнимый с объемом детектора. Это возможно, если материал детектора поддерживает «компактные» волны — плазмоны. Такие волны представляют собой согласованное движение электронов проводимости и электромагнитного поля, подобно согласованному движению ветра и поверхности морской воды при зарождении шторма. В теории эффективность такого детектора должна возрастать в условиях резонанса.

Реализация детектора оказалась сложнее, чем писали теоретики. В большинстве полупроводников плазмоны быстро гаснут из-за столкновений электронов с примесями. Надежды связывали с графеном, но и он не обладал до недавних пор достаточной чистотой.

Авторы предложили решение проблемы детектирования терагерцовых волн. Созданный фотодетектор представляет собой лист двухслойного графена, зажатый кристаллами нитрида бора и подключенный контактами к терагерцовой антенне. В таком «бутерброде» примеси выталкиваются к краям, давая плазмонам свободно распространяться. При этом графен вместе с контактами образует резонатор для плазмонов, а двухслойность графена дает свободу для настройки скорости волн.

Ученые по сути получили компактный (несколько микрон) терагерцовый спектрометр, управляющийся путем изменения напряжения. Авторы показали также потенциал детектора и для фундаментальной науки. Измеряя ток детектора при изменении концентрации электронов и частоты, можно узнать о свойствах плазмонов.

«Наш прибор объединяет в себе чувствительный детектор и спектрометр терагерцового излучения, а также инструмент для изучения плазмонов в двумерных материалах, — рассказывает Дмитрий Свинцов, один из авторов работы, руководитель лаборатории оптоэлектроники двумерных материалов МФТИ. — Все эти вещи существовали и до нас, но они занимали размер целого оптического стола. А теперь та же функциональность «упакована» в десяток микрометров».

Работа российской части коллектива была поддержана Российским научным фондом.

Схема детектора. Канал транзистора из двухслойного графена (bilayer graphene, BLG) зажат между кристаллами гексагонального нитрида бора (hBN), весь «сэндвич» находится на подложке окисленного кремния (SiO2/Si). Два лепестка терагерцовой антенны подключаются между истоком и затвором (левый и верхний электроды), сигнальное напряжение ΔU считывается между истоком и стоком (два крайних электрода).

Иллюстрация. «Волны на графене». Дизайнер: @tsarcyanide

Иллюстрация. «Волны на графене». Дизайнер: @tsarcyanide

Источник:

  • Пресс-служба МФТИ

Карточка организации:

Добавить комментарий

  • 27
  • 28
  • 29
  • 30
  • 31
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30