03 марта 2021 Рубрика: Исследования и разработки, Новости организаций Ключевые слова: ИТМО, наночастицы, металлические наночастицы
Такие системы используются повсеместно: от доставки лекарственных препаратов до катализа в нефтехимии. Статья ученых о новом методе получения нанокапсул в журнале Chemistry of Materials.
Полые наночастицы металлов сейчас используются во многих областях. Химики применяют их в качестве катализаторов для различных реакций, в том числе для дегидрирования — одного из наиболее важных процессов в нефтехимии. Также они используются для адресной доставки лекарств и их контролируемого высвобождения. Кроме того, на полых наночастицах обнаружены уникальные оптические эффекты.
«В фотонике на наночастицах металлов наблюдают такие эффекты, как плазмонный резонанс, необходимый для увеличения сигнала при спектроскопии и повышения чувствительности приборов, — рассказывает магистрант Университета ИТМО Александра Фальчевская. — Еще одно потенциальное применение — в медицине, где популярна идея адресной доставки лекарственных препаратов, в том числе путем инкапсулирования их в металлические полые наночастицы».
Традиционно ученые экспериментировали в основном с полыми наночастицами так называемых благородных металлов: палладия, платины, серебра, золота. Они меньше окисляются и вообще менее химически активны.
«Однако в последние лет пять больше заметна тенденция к использованию неблагородных металлов, — продолжает Александра Фальчевская, — их больше, они дешевле и при этом не уступают благородным. Химия же переходных металлов зачастую шире и богаче — ведь на них можно обнаружить больше различных эффектов».
Получить наночастицы вовсе не просто, для этого существует множество разных методов. Частицы можно получать химически, в том числе с помощью золь-гель метода. Но этот путь предполагает множество промежуточных реакций. Другие — физические — методы предполагают использование дорогостоящих лазерных или других установок. Лазерный импульс бьет по подложке из нужного металла, в результате чего от нее «отрываются» наноразмерные объекты.
Еще сложнее сделать наночастицы полыми. Для этого чаще всего используют темплатные методы, когда на сферическую частицу или, по-научному, темплат, «лепят» нужный материал, а потом темплат вытравливают.
«Этот метод не очень удобен, а для получения именно металлических частиц он не подходит вовсе. Есть и другие способы, например, самосборка одной капсулы из множества более мелких частиц, — объясняет Александра Фальчевская. — Все они по-своему хороши, но опять же для получения различных видов именно металлических конструкций подходят мало. Методами лазерной абляции иногда можно получить металлические нанокапсулы, однако это требует сложного и дорогостоящего оборудования».
Ученые Университета ИТМО предложили альтернативный способ получения металлических наночастиц из переходных металлов, основанный на использовании реакции гальванического замещения. Если положить сравнительно активный металл, скажем, железную ложку, в раствор соли металла, находящегося правее в ряду напряжений (например, меди), то через некоторое время можно наблюдать интересный эффект. Атомы железа начинают вытеснять медные ионы из раствора — те, в свою очередь, начинают покрывать ложку.
«Если мы возьмем наношарик металла и поместим в раствор соли меди, то будет происходить окислительно-восстановительная реакция, — рассказывает Александра Фальчевская. — Частица и раствор будут обмениваться электронами: медь будет забирать электроны из наношарика, окисляя его. Металл из наношарика будет переходить в раствор, а металл из соли будет восстанавливаться, переходить в твердую форму и оседать на границе раздела фаз — собственно, на поверхности шарика».
Таким образом, вокруг исходной частицы образуется медная нанокапсула с полостью внутри — на том месте, где находился исходный шарик.
Для своих экспериментов ученые использовали не обычные металлы вроде железа, а галлий и его сплавы с индием. Это так называемый жидкий металл, который имеет очень низкую температуру плавления. Так, кусочек галлия можно расплавить, буквально сжав его в кулаке. Благодаря этому свойству, получать исходные наночастицы галлия очень просто. Достаточно взять обычную каплю металла, нагретого до 30 градусов цельсия и воздействовать на нее ультразвуком, чтобы получить микро- и нанокапли.
Еще одно преимущество жидких металлов в том, что они имеют сравнительно низкую активность. Поэтому подобный опыт можно проводить потенциально с двумя десятками различных металлов, находящихся в таблице электрохимической активности выше галлия и индия.
«Можно получить как монометаллические полые частицы, так би-, и даже триметаллические — когда в одной капсуле будет несколько разных металлов. Более того, удалось получить частицы различной морфологии. С использованием дополнительных веществ мы можем контролировать, чтобы частицы не были гладкими, или вовсе имели бы отростки для увеличения общей поверхности частицы, — отмечает Александра Фальчевская. — Можем делать их более или менее пористыми, менять толщину стенки капсулы. Это универсальный и вариабельный метод. Он позволит любому исследователю получить капсулу заведомо известной формы и размера для исследований, которые он проводит».
Константин Крылов
Александра Фальчевская
Изделия из жидких металлов
Получение наношариков металла. Иллюстрация из статьи
Жидкие металлы
Источник:
Ссылка:
Карточка организации:
Регион:
|
Вы не авторизованы на портале.
Если вы уже зарегистрированы на RusNanoNet.ru, введите логин и пароль.
Если нет, то для того чтобы задать свой вопрос, необходимо зарегистрироваться.